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A B S T R A C T

A robust hydrological modeling at a fine spatial resolution is a vital tool for Norway to simulate river discharges
and hydrological components for climate adaptation strategies. However, it requires improvements of modelling
methods, detailed observational data as input and expensive computational resources. This work aims to set up a
distributed version of the HBV model with a physically based evapotranspiration scheme at 1 km resolution for
mainland Norway and to calibrate/validate the model for 124 catchments using regionalized parameterizations.
The Penman-Monteith equation was implemented in the HBV model and vegetation characteristics were derived
from the Norwegian forest inventory combined with multi-source remote sensing data at 16m spatial resolution.
The estimated potential evapotranspiration (Ep) was compared with pan measurements and estimates from the
MODerate Resolution Imaging Spectrometer (MOD16) products, the Global Land Evaporation Amsterdam Model
(GLEAM) and Variable Infiltration Capacity (VIC) hydrological model. There are 5 climatic zones in Norway
classified based on 4 temperature and precipitation indices. For each zone, the model was calibrated separately
by optimizing a multi-objective function including the Nash-Sutcliff efficiency (NSE) and biases of selected
catchments. In total, there are 85 catchments for calibration and 39 for validation. The Ep estimates showed
good agreement with the measurements, GLEAM and VIC outputs. However, the MOD16 product significantly
overestimates Ep compared to the other products. The discharge was well reproduced with the median daily NSE
of 0.68/0.67, bias of −3%/−1%, Kling-Gupta efficiency (KGE) of 0.70/0.69 and monthly NSE of 0.80/0.78 in
the calibration/validation periods. Our results showed a significant improvement compared to the previous HBV
application for all catchments, with an increase of 0.08–0.16 in the median values of the daily NSE, KGE and
monthly NSE. Both the temporal and spatial transferability of model parameterizations were also enhanced
compared to the previous application.

1. Introduction

Understanding the past, present and future climate impacts serves as
basis to develop adaptation strategies for decision makers. It requires
high spatial resolution information on projected impacts, which can be
directly applied in adaptation measures (Kaspersen et al., 2012). For
the water sector, hydrological models are important tools to project the
impact of climate change on runoff, water resources and flooding at
both regional and large scales (Olsson et al., 2016).

In Norway, the HBV model is one of the most widely used tools for
runoff simulations (Bergström, 2006). The spatially distributed version
of this model was used to produce the map of average annual runoff for

Norway at 1 km resolution (Beldring et al., 2003) and showed good
performance for river discharge and hydrological components (e.g.
snow storage, soil moisture, groundwater recharge and runoff). In ad-
dition, the model has been used to provide fine resolution hydrological
projections in the climate impact assessments for the governmental
report “Climate in Norway 2100” (Hanssen-Bauer et al., 2017) pub-
lished by the Norwegian Centre for Climate Services (NCCS).

Even though the HBV models has been used widely and shown good
performance during evaluations, the model requires further improve-
ments on its conceptual model structure to better quantify the impacts
of both climate and land use changes. There is an increasing discussion
whether conceptual rainfall-runoff models are capable to simulate the
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water balance under changing climatic conditions (Coron et al., 2014;
Fowler et al., 2016; Merz et al., 2011). The calibrated parameters may
not be valid under non-stationary conditions, and insufficient model
calibration and validation strategies may further contribute to poor
temporal transferability of models. In addition to such issues, measured
precipitation at gauge stations exhibit problems in Norway such as
undercatch (Førland et al., 1996). Such uncertainties largely influences
estimates of, for example, evapotranspiration (E) by hydrological
models. Since E is constrained by potential evapotranspiration (Ep) and
soil moisture in the model, robust Ep estimates can help to reduce the
uncertainty caused by biased precipitation data. Several studies reveal
that different Ep formulas could lead to different changes in Ep as well
as river discharge under climate scenarios (McAfee, 2013; Seiller and
Anctil, 2016). The use of data-intensive methods, i.e. the methods
consider other climatic variables in addition to air temperature, are
recommended when estimating the possible effects of climatic changes
on evaporative demand (Donohue et al., 2010; McAfee, 2013).

A major restriction of using physically based Ep methods (e.g.
Penman-Monteith) on a large scale is the lack of spatially distributed
input data, foremost vegetation parameters and meteorological forcing
data. Recently, an enhanced forest classification scheme based on the
Norwegian forest inventory combined with multi-source remote sensing
data (Majasalmi et al., 2018) has become available, providing detailed
information at 16m spatial resolution on forest vegetation character-
istics in Norway. This enabled us to estimate Ep using the Penman-
Monteith approach in the HBV model and to compare it with pan
evaporation measurements and satellite-based products, such as pro-
ducts from the MODerate Resolution Imaging Spectrometer (MOD16)
(Mu et al., 2011) and the Global Land Evaporation Amsterdam Model
(GLEAM, Miralles et al., 2011). Satellite-based products are considered
as important land evaporation estimates on terrestrial water and energy
cycles and environmental changes (Miralles et al., 2016), and are in-
creasingly used for model calibration or as input to hydrological models
(Bowman et al., 2017; Demirel et al., 2018; Lopez et al., 2017; Spies
et al., 2015). However, these satellite-derived data have not yet been
validated in Norway due to lack of, for example, long-term flux net
data. Hence, a comparison between the ground based measurements
and the Ep estimates using different input data and methods can im-
prove the understanding of evaporation on the national scale, which
has rarely been documented in literature.

Another potential improvement for the distributed version of the
HBV modelling can be the application of a new calibration approach.
The previous version of the HBV model was calibrated simultaneously
against the discharge of 141 catchments across Norway (Beldring et al.,
2003). The calibration lasted for three months due to a large number of
grid cells (more than 300,000) and 69 calibration parameters. In the
recent decades, there is an increasing trend of applying regionalization
calibration approaches in large-scale hydrological modelling
(Abbaspour et al., 2015; Beck et al., 2016; Hundecha et al., 2016; Troy
et al., 2008). One widely used approach is to construct a regression
model linking model parameters to catchment characteristics or other
variables and perform the calibration (Hundecha et al., 2016; Rakovec
et al., 2016). Other common approaches focus on geographic proximity
(Oudin et al., 2008), the climatic and/or physiographic similarity of
catchments or grid cells (Beck et al., 2016; Parajka et al., 2007; Troy
et al., 2008). They either interpolated independently calibrated para-
meters for selected catchments to other non-gauged areas or calibrated
multiple catchments with similar characteristics simultaneously and
transfer the parameters to ungauged areas which have the similar
characteristics of the calibrated catchments.

Yang et al. (2018) compared the performance of different re-
gionalization approaches using the Water and Snow balance MODeling
system (WASMOD) for 118 Norwegian catchments. They found that
applying a set of regionalized parameters to catchments within one
climatic zone shows similar results as the distance-based regionaliza-
tion methods and outperforms the regression-based ones. This study

motivated us to apply a regionalized approach based on climatic si-
milarities to calibrate the distributed HBV model. It is expected to im-
prove the runoff simulations both temporally and spatially for the
whole land surface of Norway. In addition, it can speed up the cali-
bration procedure by calibrating different groups of catchments in
parallel.

Thus, this study attempts to improve both the HBV model structure
and the calibration procedure to better simulate Ep as well as dis-
charges for mainland Norway. It shows the first application of the
modified HBV model using the Penman-Monteith method with vege-
tation characteristics derived from a high-resolution dataset and a re-
gionalized calibration procedure. The main objectives of this study are
formulated as 1) to set up the distributed version of the HBV model with
the Penman-Monteith method at 1 km resolution for the mainland of
Norway; 2) to evaluate the Ep estimates using both ground and sa-
tellite-based data; 3) to calibrate and validate the model for 124
catchments using regionalized parameterizations and 4) to compare the
simulated river discharge and hydrological components with the out-
puts from the previous HBV application used in the “Climate in Norway
2100” report (Hanssen-Bauer et al., 2017).

2. Study area

Norway is located in Northern Europe and covers an area of about
325 000 km2. The elevation spans from 0m along the coast to more
than 2000m in the central regions (Fig. 1). About half of the land area
is covered by bare soil and heathers in high mountains and about 38%
of the area is covered by forest. There is a large number of lakes and
bogs/wetlands in Norway, covering about 5% and 6% of the total land
surface, respectively. Only about 3% of the land surface is used as
arable land. Norwegian soils and aquifers are generally shallow and
have a limited storage capacity consisting mainly of thin precipitation-
fed till deposits. The bare mountain and moraine soils account for ca.
80% of the total mainland area.

The mean annual temperature during 1971–2000 was about 1.3 °C
for the mainland (Hanssen-Bauer et al., 2017). It is warmest along the
coast of southern Norway with the annual temperature up to 7 °C while
it is coldest in the high mountains with the annual temperature down to
−4 °C. Due to the low temperature, only about 11% of the land area has
a growing season lasting more than six months (Hanssen-Bauer et al.,
2017). Similar to temperature, the annual precipitation also shows a
distinct spatial distribution, ranging from 300mm in south-eastern and
northern Norway to more than 3500mm in the west. The mainland can
be divided into 6 hydrological regimes: Finnmark, Nordland,
Trøndelag, Western Norway, Eastern Norway and Southern Norway
(Fig. 1).

In total, 124 catchments were selected for model calibration and
validation in this study (Figs. 1 and 2). The distribution of the catch-
ments represents various climate and hydrological regimes, geographic
conditions and landscape types in Norway. These catchments are also
used for calibration in the previous HBV application and most of them
are considered as near-natural catchments (Beldring et al., 2003). The
size of the catchments varies from 7 to 15450 km2 and 85% of them are
smaller than 1000 km2. As some of the catchments stretch along the
national borders, the catchment area in the neighbouring countries was
also included in the HBV modelling (see Fig. 2). Detailed information of
the 124 catchments is listed in Appendix A.

3. Methods and data

3.1. HBV model

The spatially distributed version of the HBV model used here
(Beldring et al., 2003) was developed for calculating the water balance
for 1×1 km2 grid cells covering the entire mainland surface area of
Norway. Each grid cell can be subdivided into lake area, glacier area
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and up to three vegetation types. The model runs with a daily time step
using precipitation and air mean temperature as input. It calculates
subgrid scale accumulation and ablation of snow, interception storage,
distribution of soil moisture storage, E, groundwater storage, runoff
response, lake evaporation and glacier mass balance. The original
method for computing Ep uses a function of air temperature and the E is
calculated based on Ep, field capacity and permanent wilting point (see
Beldring et al., 2003 for details and Table 1 for the range of field ca-
pacity). In this study, the permanent wilting point was assumed as zero
meter based on the assessments of the HBV parameterizations for
Scandinavian catchments by Bergström (1976). The snowmelt is

calculated by a simple degree-day method. The runoff is simulated by
two non-linear parallel reservoirs representing direct discharge and the
groundwater response. The calibration parameters include parameters
for evaporation and snowmelt processes in each land use type and for
the soil and groundwater processes in each soil type (Table 1). Detailed
information of the model and the algorithms can be found in Beldring
et al. (2003) and Bergström (1995). We reference the distributed HBV
model described by Beldring et al. (2003) as the old version of the HBV
model in this study.

In this study, we improve the model structure by replacing the
simple Ep function with the Penman-Monteith method. Ershadi et al.

0 100 20050 Kilometers

Legend
Gauge
Hydrological regime

DEM 
m a.s.l.

< 200
200 - 400
400 - 600
600 - 800
800 - 1 000
1 000 - 1 200
1 200 - 1 400
> 1400

30°0'0"E10°0'0"E0°0'0"

60°0'0"N

50°0'0"N

Southern Norway

Eastern Norway
Western Norway

Trondelag

Nordland

Finnmark

Fig. 1. The Digital Elevation Model (DEM) of the mainland Norway, the location of the 124 discharge gauging stations and the hydrological regimes in Norway.
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(2015) compared the estimates of E using different structures of the
Penman–Monteith model, a traditional single-source model (Monteith,
1965), a two-layer model based on Shuttleworth and Wallace (1985)
and a three-source model based on Mu et al. (2011). They found that no
single model structure consistently outperformed the others for all
biome types. In addition, best estimates are often generated using the
surface resistance parameterization based on the lookup-table from Mu
et al. (2011) and the Thom (1975) formulation for aerodynamic re-
sistance that incorporated dynamic values of roughness parameters.

Based on their findings and data availability of this study, we ap-
plied the traditional single-source Penman-Monteith method (Eq. (1))
to estimate Ep (mm).
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where λv is the latent heat of vaporization (J kg−1), Rn is the net ra-
diation (Wm−2), G is the soil heat flux (Wm−2), (vs – va) represents the
vapor pressure deficit of the air (Pa), ρa is the density of air at constant
pressure (kgm−3), cp is the specific heat of the air (J kg−1 K−1), Δ re-
presents the slope of the saturation vapor pressure temperature re-
lationship (Pa K−1), γ is the psychrometric constant, and rs and ra de-
note the surface and aerodynamic resistances (s m−1).

The Thom formulation was used to estimate ra (Eq. (2)).
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where zw is the height of the wind instrument (m), zow is the roughness
length governing momentum transfer (m), zh is the height of the hu-
midity measurements (m), zoh is the roughness length governing
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Fig. 2. Map of the modelling domain with the background colours indicating the five different climatic zones. The catchments used for calibration are coloured
according to which climatic zone they belong to, whereas watersheds with black borders were used for validation.
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transfer of heat and vapour (m) (zoh=0.1zom), d is the zero plane dis-
placement height (m), k is the Kármán’s constant (0.41), uz is the wind
speed at height zw (m/s) and h is the vegetation height (m). Both the zow
and d are a function of vegetation height and leaf area index (LAI)
following Federer et al. (1996).

The LAI varies for deciduous forest and crops seasonally and it is
assumed to be constant for other vegetation types. Budburst of decid-
uous forest is determined by (spring) temperatures using a Growing
Degree Day (GDD) sum approach (Olsson and Jonsson, 2014) while the
timing of autumn phenophases in a given location is assumed to be
determined by photoperiod and it is simulated with constant

senescence dates. The LAI for crops is estimated by a simplified EPIC
crop model (Williams et al., 1984).

We applied the Biome-Property-Look-Up-Table from Mu et al.
(2011) to estimate the surface resistance parameters for vegetation. For
other land cover types, e.g. urban and built-up, we used the para-
meterizations from the evapotranspiration model AMOR (Tallaksen
et al., 1996), which was developed for Norway.

All parameterization for the Penman-Monteith method is prescribed
in the HBV model (see Appendix B for the prescribed parameter values).
Since there is no calibration parameters needed for the Ep simulation,
e.g. LAI, vegetation height, albedo and bulk resistance, the Ep estimates

Table 1
List of calibration parameters.

Parameter Explanation Unit Min Max Use in old HBV Used in new HBV

General CORR_RAIN Precipitation correction for undercatch – 0.5 1.5 no yes
CORR_SNOW Snow correction for undercatch – 0.5 2 no yes

Lake KLAKE Rating curve constant – 1.00E−04 0.1 yes yes
EPOT_PAR_LAKE Temperature index for potential evaporation from lakes m/°C 1.00E−06 0.002 yes no

Land use INTER_MAX Maximum interception storage m 1.00E−04 0.03 yes no
EOT_PAR Temperature index for potential evaporation m/°C 1.00E−06 0.002 yes no
SMELT_T Snow melt temperature °C −1 2 yes yes
SMELTR Temperature index for snow melt rate m/°C 1.00E−04 0.01 yes yes
IMELTR Additional coefficient to snow melt rate – 1 4 yes yes

Soil FC Field capacity m 1.00E−02 1 yes yes
BETA Shape coefficient of soil moisture – 1 5 yes yes
KUZ Upper zone recession coefficient – 1.00E−03 1 yes yes
ALFA Upper zone nonlinear drainage coefficient – 1 2 yes yes
PERC Percolation from upper zone to lower zone – 1.00E−03 0.5 yes yes
KLZ Lower recession coefficient – 1.00E−03 1 yes yes

Fig. 3. Climatic, geophysical and land cover characteristics for the grids in the five climatic zones.
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must be validated against ground measurements and other model pro-
ducts before the model is calibrated against discharges. In addition, we
corrected the rainfall gauge undercatch by a continuous adjustment
function derived by Wolff et al. (2015) based on data from a test site in
southern Norway. However, we found that this correction function
cannot guarantee a reliable correction for other parts of Norway, thus
the precipitation/snow correction coefficients need to be adjusted for
each climatic zone in this study (Table 1).

3.2. Regionalized calibration

The HBV model was calibrated and validated using discharge ob-
servations from 124 catchments spread across the whole country
(Fig. 2). As we mentioned in Section 3.1, all parameters used by the
Penman-Monteith method were prescribed, so we should validate the
Ep estimates to ensure a reasonable simulation for this process. Based
on the validation of Ep for the period 2000–2012 (the details on the
selection of period are explained in Section 3.4), we can start the model
calibration against discharges for the period of 2000–2007, which lies
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Fig. 4. The average annual potential evaporation measured by the Thorsrud 2500 evaporimeter at 42 stations (a) and average annual potential evapotranspiration for
the mainland of Norway estimated by the HBV (b), MOD16 (c), GLEAM (d) and VIC (e) models.

Fig. 5. Measured and simulated annual Ep at the 42 stations equipped with the
Thorsrud 2500 evaporimeter.
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in the validation period of Ep and minimizes the calibration time
consumption. The period 1983–1999 was used for validation.

Yang et al. (2018) applied a set of regionalized model parameters to
multiple catchments with similar climate conditions in Norway and
found satisfactory runoff simulations, which are comparable with the
results using distance-based regionalization approaches (see Fig. 8 in
their paper). Following their study, we selected the regionalization
approach based on climatic similarity in this study, i.e. multiple
catchments with similar climatic conditions were calibrated simulta-
neously and the calibrated parameters sets were transferred to other
ungauged grid cells within the same climatic zone. It was further as-
sumed that each climatic zone has similar precipitation correction
factors.

We used four climatic indices to classify the study domain into five
distinct climatic zones. The indices are mean annual precipitation,
precipitation seasonality index (the ratio between the three consecutive
wettest and driest months), mean annual temperature and temperature
seasonality index (the mean temperature of the hottest month minus
the mean temperature of the coldest month). The indices were calcu-
lated for each 1×1 km2 grid cell and the K-Mean clustering method
(Hartigan and Wong, 1979) was applied to the standardized indices for
all modelling grid cells. Fig. 2 illustrates the five climatic zones after
classification and Fig. 3 shows that the zones represent not only distinct
climatic regimes but also different geophysical and land cover char-
acteristics, though only the climate indices were used for classification.
Zone 1 is mainly located in the far north region, with lowest tem-
perature and precipitation but a high seasonality index. Zone 2 spreads
in the mountainous region from the south to the north, so it has the
highest elevation among the five zones. This zone is mainly covered by
bedrock and heathers and has almost no forest. Zone 3 is the warmest

and wettest area and is situated along the west coast. It has a low cli-
mate seasonality index and it is covered by both forest and heather.
Zone 4 is mainly located in east Norway and zone 5 in the southern and
central part of Norway. Both zones have high coverage of forest but
they differ in all climatic indices moderately.

For calibration, we selected catchments with drainage areas pre-
dominantly situated within one distinct climate zone (Fig. 2). As a re-
sult, there are five calibration groups with 3, 20, 31, 13 and 18
catchments selected for zone 1–5, respectively. The remaining 39
catchments, which cover more than one climatic zone, form the vali-
dation group used for testing the spatial transferability of the model.
We calibrated the model for each climatic zone in parallel to speed up
the calibration procedure and improve the simulation results on dis-
charge for the selected catchments.

Three criteria were used for multi-criteria optimization, the non-
dimensional performance criterion of Nash and Sutcliffe (1970) effi-
ciency (NSE), the percent bias (PBIAS) in water balance and the percent
volume bias in the high-flow segment of the flow duration curve (ΔFHV,
0–0.02 flow exceedance probabilities) (Yilmaz et al., 2008). ΔFHV is an
index for high flows, aiming to improve the simulation of floods. The
parameter estimation routine PEST (Doherty and Skahill, 2006) was
applied for finding the parameter set giving the best model performance
using the multi-criteria defined above. Since PEST minimizes the dif-
ference between the criteria results and their ideal values (1 for NSE
and 0 for biases), the calibration objective function containing three
criteria at multiple gauges can be formulated as Eq. (3).

Fig. 6. Model performance for the catchments in all calibration groups, for the catchments in the individual calibration groups (Group 1–5) given by the climatic
zones, and for all validation catchments for the calibration period (2000–2007) as well as the validation period (1983–1999) using the new version of the HBV model.

S. Huang, et al. Journal of Hydrology 577 (2019) 123585

7



= + +
= =

=

W NSE W PBIAS W

FHV

(1 ) ( )

( )

NSE
i

n

i PBIAS
i

n

i FHV

i

n

i

1

2

1

2

1

2

(3)

where W are weights and n are the number of calibration catchments
within each group. There is an equal weight between catchments but
the WNSE is higher than the bias weights to achieve a good calibration
performance. As the calibration time is significantly reduced by parallel
calibration, 8–10 PEST runs were carried out with various initial
parameter values, which were randomly generated within the para-
meter ranges listed in Table 1.

After the calibration, the model performance was evaluated using
the daily NSE, PBIAS, Kling-Gupta Efficiency (KGE) (Kling et al., 2012)
and monthly NSE for all 124 catchments in both calibration and vali-
dation periods.

3.3. Model input data

To setup the distributed version of the HBV model, we used a digital
elevation model (DEM), soil and land cover raster maps with 1 km
horizontal resolution. The DEM map is obtained from the Norwegian
Mapping Authority, the Swedish National Land Survey and the National
Land Survey of Finland. The soil map combines the information from
the Geological Survey of Norway and the International Soil Reference
and Information Centre (ISRIC) (http://isric.org). Eight soil types were
reclassified for the modelling domain.

High-resolution land cover information was derived from the
National Land Resource Map (Ahlstrøm et al., 2014) and a remote
sensing based forest map (SAT-SKOG, Gjertsen and Nilsen, 2012),
complemented by Corine Land Cover 2000 (https://www.eea.europa.
eu/data-and-maps/data/clc-2000-raster-4) for areas outside Norway,

and was aggregated to percentage share of different land cover types at
1×1 km2 HBV modelling resolution. The land cover classification
distinguishes eight general land use types (open area, bog, built-up,
cropland, heather, bedrock, lake, permanent ice and snow) and 12
structural forest types to better reflect spatial variability in hydro-
logically relevant land surface properties within forested areas. The
forest types are based on the classification scheme developed by
Majasalmi et al. (2018) for Fennoscandian forests which consists of
three species groups (spruce, pine, and deciduous dominated) with four
structural subgroups each. Look-up tables provided by Majasalmi et al.
(2018) were used to parameterize maximum leaf area index and ve-
getation height in HBV, shortwave albedo was parametrized with va-
lues given in Bright et al. (2018).

The new version of the distributed HBV model requires seven cli-
mate variables with daily time steps as input: mean, maximum and
minimum air temperature (Tmean, Tmax, Tmin), precipitation (P),
shortwave incoming radiation (SWR), vapour pressure (VP) and wind
speed. The seNorge2 precipitation dataset (Lussana et al., 2018) pro-
vides an observational gridded dataset over Norway from 1957 to the
present day. This dataset is the most updated precipitation data from
the Norwegian Meteorological Institute. It shows more precise esti-
mates of annual average precipitation than seNorge version 1.1 (Mohr,
2008), which was used as input in the previous HBV application
(Beldring et al., 2003). However, the product substantially under-
estimates precipitation in data-sparse areas and inherits the undercatch
problem from the measurements (Lussana et al., 2018). The Tmax,
Tmin and wind datasets are based on different post-processing proce-
dures applied to NOrwegian ReAnalysis 10 km (NORA10) product
(Reistad et al., 2011), which is a dataset of hindcasts (i.e. dynamical
downscaling of a global reanalysis or analysis system over the Scandi-
navian peninsula). Tmin and Tmax combine the NORA10-derived daily
extreme temperature fields with in-situ observations from a climate

Fig. 7. Comparison of observed and simulated daily discharge (left sub-figures) at two selected gauges 88.4.0 and 127.13.0. The comparison of average monthly
discharges is shown in the right panels.
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station network from 1981 to 2012 (Lussana, 2017). The wind dataset is
the result of a quantile mapping scheme aimed at adjusting the
NORA10 bias to better match the climatology of a high-resolution nu-
merical weather prediction model, such as Applications of Research to
Operations at Mesoscale model for Meteorological Cooperation on
Operational Numerical Weather Prediction (AROME – MetCoOp)
(Mueller et al., 2017). All datasets have the same 1×1 km2 grid do-
main as the seNorge datasets, which covers the Norwegian mainland
plus a strip of land extending into Sweden and Finland. Based on the
Tmax, Tmin, P and wind data for the period 1982–2012, we applied the
Mountain Microclimate Simulation Model (MTCLIM) (Bohn et al.,
2013), which is embedded in the Variable Infiltration Capacity (VIC)
hydrological model (Liang et al., 1994) (version 4.1.2), to generate
remaining climate variables required by HBV (Tmean, SWR and VP) for
the same period.

3.4. Data for potential evapotranspiration and snow water equivalent
comparison

Ground measurements of Ep are scarce in Norway. There are only
pan measurements from the “Thorsrud 2500” evaporimeter available at
42 locations across the country from 1967 to 1972 for the warm months
(May–September) (Hetager and Lystad, 1974). Due to the cold climate
and low winter insolation in Norway, the majority of E occurs in these
warm months as shown in other high latitude areas (Shutov et al.,
2006).

Two recently published satellite-based products were selected for
comparison with the HBV estimates and the pan measurements. These
are the MOD16 products of mean annual Ep from 2000 to 2012 (http://
files.ntsg.umt.edu/data/NTSG_Products/MOD16/MOD16A2_
MONTHLY.MERRA_GMAO_1kmALB/GEOTIFF_0.05degree/) and the

GLEAM annual Ep available from 1980 to 2014 (https://www.gleam.
eu/). The MOD16 products use a Penman-Monteith based method but
estimate potential soil evaporation, soil evaporation from wet soil
surface, canopy evaporation and potential transpiration from plant
tissues separately (Mu et al., 2011). The climate forcing of MOD16 is
derived from the daily global metrological reanalysis data from NASA’s
Global Modeling and Assimilation Office (GMAO) at 1× 1.25° resolu-
tion. In contrast, the GLEAM Ep was calculated using the Priestley and
Taylor equation (Miralles et al., 2011) and the climate forcing data
combines the ERA-Interim and MSWEP v1.0 reanalysis data at 0.25°
resolution.

None of the satellite products and the HBV simulation can be di-
rectly compared with the measurements due to different time spans.
Therefore, we applied the VIC hydrological model to simulate the long-
term Ep from 1961 to 2012 to bridge the temporal gaps. The VIC model
gives an approximation of the recent warming impacts on Ep between
the period 2000–2013 and 1967–1972 and helps to justify the com-
parison between the observations and estimations. The VIC model used
the global VIC input parameters at 0.5° resolution (Nijssen et al., 2001)
and the reanalysis climate forcing data from the Water and Global
Change (WATCH) project (Weedon et al., 2011) as input. The Ep is
estimated from an area-weighted sum of potential transpiration and
potential soil evaporation using the Penman-Monteith based method for
each grid cell.

The snow water equivalent (SWE) data (Saloranta, 2012) was cal-
culated based on the measurements of snow depth and density recorded
at stations operated by various hydropower companies since 1914. The
stations were mainly located in the central mountain area in the
southern, eastern and western Norway (see Appendix C). Most of the
measurements (60%) are taken once per snow season around the time
of the maximum annual SWE (March–April), but at many stations

Fig. 8. Difference in model performance between the new and old version of the HBV model for all 124 catchments for three distinct periods.
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several (up to 13) measurements per snow season have been taken. The
whole data set has been quality controlled by removing or correcting
bad or duplicate values and outliers. Only data in the period 1983–2012
were used in model evaluation, resulting in 22,032 observations at
1151 stations (see Appendix C).

4. Results

4.1. Validation of potential evapotranspiration estimates

The Ep estimates for the summer months (May–Sep.) from the HBV
model, MOD16, GLEAM and the VIC model are compared with the pan

measurements in Fig. 4. The measurements are only available during
the period from 1967 to 1972 in Norway while the model estimates
span from 2000 to 2012. As we mentioned in Section 3.4, we ran the
VIC model for the past 50 years to evaluate how Ep varied in different
historical time slices. The long-term simulation with the VIC model
shows that there is a slight increase of 6mm/year in Ep from the period
1962–1970 to 2000–2012 (see Appendix D). This increase is very small
compared to the average annual Ep that varies between 237 and
254mm/year for the period spanning the past 50 years. Therefore, we
assume that the difference of measured Ep between 2000 and 2012 and
1967–1972 is also negligible and we can directly compare the estimates
with the measurements. As shown in Fig. 4, all estimates have good

(a) NSE (old HBV) (b) PBIAS (old HBV)

(c) NSE (new HBV) (d) PBIAS (new HBV)

NSE
< - 0.5
0.5 - 0.6
0.6 - 0.7
0.7 - 0.8
> 0.8
Norway

Bias

Norway

< -25%
-25%  -  -10%
-10%  -  10%
10%  -  25%
> 25% 

Fig. 9. Performance of the old (a and b) and new (c and d) version of the HBV model for the period 1983–2012. The background colours show the five climatic zones
used in this study.
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(a) actual E (old HBV)
mean = 517 mm/yr

200 250 300 350 400 450 500

(b) actual E (new HBV)
mean = 221 mm/yr

(c) runoff (old HBV)
mean = 1130 mm/yr

(d) runoff (new HBV)
mean = 1112 mm/yr

500 1000 1500 2000 2500 3000 3500

(e) SWE (old HBV)
mean = 390 mm

(d) SWE (new HBV)
mean = 422 mm

100 250 500 750 1000

Fig. 10. Average annual actual evapotranspiration (E) (a and b) and runoff (c and d), as well as maximum snow water equivalent (SWE) (e and f) in 1983–2012 using
the old and new version of HBV.
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agreement with an average annual Ep of 230–260mm/year except the
MOD16 product. The MOD16 shows a very high average annual Ep of
more than 400mm/year. The measurements indeed suggest that the Ep
is significantly overestimated by the MOD16 especially for the Finn-
mark region, where the Ep is below 200mm/year. In contrast, the HBV,
GLEAM and VIC models give reasonable estimates compared to the
measurements, with average annual Ep ranging from<200 to
300mm/year in the north and Finnmark and from 200 to> 500mm/
year in other regions. In addition, the HBV model presents the finest
resolution among all products so that it can clearly reflect the spatial
distribution of different land cover types and climate regimes.

Fig. 5 compares the estimated Ep with the measurements at the 42
stations. The MODIS data gives the overall highest estimate and it is
much higher than the measurements. The GLEAM model using the
Priestley and Taylor equation shows slightly higher estimates with less
variability with respect to the measurements. Both the HBV and VIC
models, which consider vegetation characteristics, give slightly lower
estimates with respect to the measurements. However, we should notice
that the measurements at a point scale cannot be identical to the esti-
mates for cells, which constitute various land use types. In addition, the
pan measurements are considered as the maximum value of E from
large lake surfaces (Hetager and Lystad, 1974), so they should in
principle be larger than the estimates using the Penman-Monteith ap-
proaches. Therefore, based on the assumption that the Ep varied only
marginally in the past 50 years indicated by the VIC results, we con-
clude that the Penman-Monteith approach with prescribed vegetation
parameters seems to provide reasonable Ep estimates for the mainland
of Norway compared to the measurements.

4.2. Calibration and validation results on river discharge

The HBV model was calibrated against discharge observations from
85 catchments, which were classified into 5 groups based on the cli-
matic zones (see Section 3.2 for details). For each group of catchments,
the parameters listed in Table 1 were estimated to minimize the ob-
jective function shown in Eq. (3). As a result, there are 5 sets of para-
meters for the HBV model to simulate the whole land surface of
Norway. Fig. 6 shows the evaluation results for different catchment
groups within the calibration period 2000–2007. In general, the HBV
model can reproduce the daily discharge well for most calibration

catchments, with a median daily NSE of 0.68, PBIAS of −3%, KGE of
0.70 and monthly NSE of 0.80. The model shows different performance
between the catchment groups and the median daily NSE/KGE varies
from 0.78/0.83 for group 1 to 0.56/0.64 for group 5. However, we
should note that there are only three catchments in group 1, so we
cannot conclude that the HBV can reproduce the discharge in Finnmark
better than in other regions. Different from the daily NSE and KGE
criteria, the median PBIAS of all five groups are close to zero and about
half of the catchments have a volume error within±12.5%. The
monthly NSE shows lower variability between the groups than the daily
values, and is above 0.7 for more than 75% of the calibration catch-
ments in all groups except group 3.

Fig. 7 shows two examples of comparison between the observed and
simulated daily/monthly discharge and explains why the daily and
monthly NSEs differ significantly. The first example is the gauge 88.4,
which is a glacier covered catchment in climatic zone 1 and shows the
best simulation performance among all catchments. The HBV model
reproduces the distinct seasonality of discharge well with both daily
and monthly time steps. The second example is the gauge 127.13,
which is located in Trøndelag and shows one of the poorest simulation
results. The HBV model underestimated most discharge peaks sig-
nificantly at the daily time step. However, the model reproduced the
monthly peak satisfactorily. The results show that the model is not
capable to reproduce flood peaks in some catchments even though the
high flow index was included in the calibration objective function. It
also indicates that the monthly simulation results are more reliable than
the daily ones for such large scale modelling.

Fig. 6 further demonstrates a good temporal and spatial transfer-
ability of the HBV model. In general, the model presents a good per-
formance for all calibrated catchments in the validation period, with
median daily NSE of 0.67, PBIAS of −1%, KGE of 0.69 and monthly
NSE of 0.78. The daily NSE and KGE show slightly better model per-
formance in terms of the lower quantile and the smallest values in the
boxplots, while the box of PBIAS expands by 2–3%, indicating larger
biases in some catchments. The model performance declined for group
1 shown by the NSE, PBIAS and monthly NSE while the simulated
discharge was improved for group 5 with the daily time step. For the
spatial validation catchments, all criteria show a similar or better model
performance compared to the calibration ones in both periods. This
indicates that the calibrated parameterizations are appropriate for the
non-gauged grid cells and the spatial distribution of simulated runoff
should be reliable.

Finally, we compared the performance criteria using the new ver-
sion of HBV with the ones using the old version for all 124 catchments
(Beldring et al., 2003) in various periods in Fig. 8. The calibration
period of the previous HBV application starts from 1991 to 2000. The
comparison shows that the new methods improve the discharge simu-
lation substantially for most catchments in all periods. The median
values of the daily NSE, KGE and monthly NSE increase by 0.08–0.16.
Though the median PBIAS of the previous simulation is also close to
zero, the extent of the boxes and whiskers is wider than the one of the
new simulation, indicating larger biases in the old than in the new si-
mulations. However, both HBV versions show a robust temporal
transferability for all catchments.

In addition to the boxplots, we compared the distribution of daily
NSE and PBIAS in the whole simulation period (1983–2012) using the
two HBV versions in Fig. 9. In general, there is no obvious spatial
pattern of NSE in both simulation runs, but the spatial pattern of PBIAS
varies in some regions. For example, the new HBV generated less bias in
the east and Finnmark while the old one performs better in terms of bias
along the coastline in Trøndelag and north regions. Significant positive
biases (dark green dots) are found in Eastern and Western Norway for
both simulations. The spatial pattern of PBIAS partly reflects the bias
distribution of the seNorge precipitation data, which is a big challenge
of climate input data at fine resolutions.

Fig. 11. Comparison between the observed snow water equivalent (SWE) at
1151 stations and the simulated SWE using the old and new version of HBV in
1983–2012. Grey dash line: 1:1 line; dark red line: linear regression line to the
new HBV results; black line: linear regression line to the old HBV results.
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4.3. Hydrological components

The climate impacts on actual evapotranspiration, runoff and snow
water equivalent (SWE) were assessed in the report “Climate in Norway
2100”. In this paper, we compare these water components simulated by
both versions of the HBV model to illustrate the differences in estimates
due to model structures and calibration procedures (Fig. 10) for the
whole simulation period (1983–2012). The results show distinct dif-
ferences in actual evapotranspiration and a high level of agreement in
runoff between the previous and current simulations. The old long-term
average evapotranspiration estimate is more than double of the eva-
potranspiration estimated in this study and it is much higher than the
measured Ep shown in Fig. 4. This is mainly caused by the over-
estimation of precipitation in the seNorge 1.1 precipitation data
(Saloranta, 2014) and the calibration of Ep in the previous application
(see Table 1).

Both HBV simulations show that the long-term average annual
runoff is over 1100mm for the mainland of Norway. This high agree-
ment is not surprising because both calibrations are against discharge
measurements from almost the same gauges. Nevertheless, the spatial
distribution of the two estimates differs at regional scales. For example,
the previous HBV simulation shows the annual runoff of more than
3500mm in large parts of western Norway while the new simulation
has moderate estimates in this region. It is hard to conclude that one
spatial distribution of annual runoff outperforms the other because the
distribution of PBIAS at gauges does not show a systematic improve-
ment using the new version of HBV (Fig. 9). However, it should be in
general more precise in the new simulation as shown in Fig. 8.

The long-term annual maximum SWE simulated by the two versions
of HBV model differs by approximately 30mm and the spatial dis-
tribution varies depending on regions. The new model simulated higher
SWE especially in the north, where the model was calibrated separately
for climate zone 1 and 2. Nevertheless, both models show distinct SWE
depth between the western and eastern Norway. The simulated SWE
from both HBV versions were also compared with observed SWE at
1151 stations in Norway (Fig. 11). The Pearson correlation coefficients
indicate that the new HBV performs better in term of SWE than the old
one in general. The regression lines show that the new HBV simulated
SWE less than 500mm very well, but overestimated high SWE values
(> 1000mm).

5. Discussion

There is an increasing trend of using satellite derived data to im-
prove hydrological modelling especially for data scarce regions.
However, different studies showed that the satellite-based data might
not give reliable estimates in specific regions. For example, poor
agreement between the MODIS16 actual evapotranspiration and the
data from eddy covariance (EC) fluxes were found in South Africa
(Ramoelo et al., 2014) and irrigation regions in China (Tang et al.,
2015). Yang et al. (2017) also found that the GLEAM data significantly
overestimated the EC measurements at four forest sites and one crop-
land site in China. The results from this study contribute to a better
understanding of the suitability and the differences between Ep pro-
ducts in Norway. They show that the MODIS Ep may not be an ap-
propriate product for Norway compared with other products. In con-
trast, the Penman-Monteith method using ground-based vegetation data
can provide reasonable Ep estimates in the mainland of Norway at a
fine resolution. Therefore, the satellite-based estimates should be
carefully evaluated before using them in hydrological modelling either
for calibration or as input data for regional studies. Finally, we should
keep in mind that the measured and estimated Ep are from two different
historical time slices in this study. The comparison results in Figs. 4 and
5 are strongly based on the assumption derived from the VIC long-term
simulation, which is also highly determined by the quality of input
data, such as the WATCH climate data and vegetation data. New

measurements in future are strongly recommended for a more reliable
validation of Ep estimates in Norway.

Using a more physically approach does not guarantee an improved
model performance (Li et al., 2015; Magnusson et al., 2015; Orth et al.,
2015; te Linde et al., 2008). However, the results in this study show a
significant improvement on the spatial and temporal transferability of
model parameterizations. This improvement can be attributed to either
a more robust estimation of Ep or the use of a better regionalization
approach, or a combination of both. The current approaches help to
reduce the uncertainty of simulated hydrological components in
Norway, especially for E. In addition, the distribution of performance
criteria for monthly discharges in this study are comparable with the
best results in Yang et al. (2018), who used a lumped conceptual model
and a combined spatial proximity and physical similarity regionaliza-
tion approach for multiple Norwegian catchments. Hence, this study
presents a robust hydrological modelling for both river discharges and
hydrological components at the national scale of Norway.

Finally, the undercatch problem in the seNorge 2 precipitation data
(Lussana et al., 2018) remains a significant challenge for hydrological
modelling in Norway. Although the precipitation undercatch can be
corrected for each climatic zone, the large PBIAS at specific gauges
requires further improvement of the precipitation data in terms of
magnitude and spatial distribution. Ideally, the precipitation should not
be corrected in the hydrological modelling and the hydrological model
should still show satisfactory performance for all studied catchments.
Hence, there is still a long-term work of improving the hydrological
modelling with the up-to-date climate forcing data at fine resolutions.
This can be achieved by either improving the interpolation method for
observed precipitation data or applying a fully coupled land-atmo-
sphere modelling system for data scarce regions as it is shown by Naabil
et al. (2017).

6. Conclusion

This study presents the recent progress in improving the distributed
version of HBV for the mainland of Norway. Firstly, we improved the
input data to the model by collecting multi-source vegetation data at
high spatial resolution and ground-based meteorological forcing data
(e.g. maximum/minimum air temperature and wind speed). Secondly,
we fed the high-resolution data to the Penman-Monteith equation to
estimate potential evapotranspiration and validated the results by
comparing with measurements and different satellite-based products.
Thirdly, we applied regionalized parameterizations to calibrate the
HBV model against discharge for multiple catchments. The calibration
and validation results show a significant improvement on the simulated
discharge as well as hydrological components, e.g. actual evapo-
transpiration, compared to previous simulation results. The transfer-
ability of model parameterizations was also enhanced yielding more
robust simulation results both in time and in space. As a result, the
current model setup is more appropriate for climate and land use im-
pact studies and it is expected to project more reliable changes in dis-
charge and hydrological components in Norway.

Further improvements are required for the existing national wide
hydrological model. Improved precipitation data is urgently appre-
ciated for a sound hydrological modelling. It is also interesting to test
other model structures (e.g. snow and river routing schemes) with
different complexities and regionalization methods. A robust snow
modelling plays an essential role in the hydrological modelling for high
latitudes. As was shown in this study, a physically based method may
improve the hydrological simulation in Norway. Thus, we plan to test a
physically based snow model for all grid cells in the mainland of
Norway and substitute it for the parametric snow module currently
implemented in HBV.
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Appendix

See Appendices A and B
See Appendices C and D

Appendix A
List of the 124 catchments for calibration and validation.

Nr. Gauge ID Latitude (°) Longitude (°) Area (km2) Group

1 2.11 62.36 11.48 119.13 Validation
2 2.28 61.22 10.27 866.25 Group4
3 2.32 61.85 10.22 463.20 Validation
4 2.142 60.64 12.05 1646.00 Group4
5 2.145 61.33 10.28 11212.84 Validation
6 2.265 61.95 11.08 618.36 Validation
7 2.268 61.80 8.45 790.90 Validation
8 2.279 60.13 11.08 432.35 Group5
9 2.291 62.01 7.87 262.27 Group2
10 2.323 60.88 11.32 42.47 Group4
11 2.439 61.18 10.89 377.09 Validation
12 2.479 62.01 10.00 156.81 Validation
13 2.604 60.87 11.56 15451.76 Group4
14 2.614 61.86 9.40 1833.91 Validation
15 2.633 59.36 11.52 87.13 Group5
16 2.634 60.67 10.81 182.60 Group4
17 3.22 59.55 10.86 299.29 Group5
18 6.10 59.99 10.80 7.03 Group5
19 6.71 60.17 10.50 7.63 Group5
20 8.2 59.89 10.51 190.19 Group5
21 12.70 60.95 9.63 570.17 Group4
22 12.114 60.21 10.02 492.53 Group4
23 12.150 60.49 8.82 24.79 Group4
24 12.171 60.71 9.46 79.75 Group4
25 12.178 60.15 9.43 309.77 Group4
26 12.192 59.52 10.12 74.68 Group5
27 12.193 59.70 9.79 51.60 Group5
28 12.209 60.56 9.88 542.89 Group4
29 12.215 60.89 8.33 119.43 Group2
30 12.286 60.40 10.54 113.26 Group5
31 12.290 60.81 9.57 2976.54 Validation
32 15.49 60.49 8.48 59.13 Validation
33 15.53 60.31 9.01 94.07 Group4
34 15.79 60.38 8.26 1177.29 Group2
35 15.174 59.08 10.18 25.58 Group5
36 16.66 59.84 8.32 6.60 Group2
37 16.75 59.67 8.07 118.28 Validation
38 16.122 59.64 8.31 42.69 Validation
39 16.132 59.76 8.79 33.10 Group2
40 16.140 60.02 7.87 822.26 Group2
41 16.193 59.43 9.13 156.65 Group5
42 18.10 58.88 9.03 236.23 Group5
43 19.107 58.44 8.70 39.32 Group5
44 20.2 58.84 8.10 276.42 Group5
45 22.4 58.12 7.53 1757.70 Group3
46 22.16 58.45 7.58 182.20 Group3
47 22.22 58.09 7.84 203.58 Group3
48 24.8 58.16 7.07 121.41 Group3
49 24.9 58.40 7.22 272.16 Group3
50 25.24 59.16 7.21 96.82 Validation
51 26.20 58.54 6.50 77.25 Group3
52 26.29 58.35 6.34 52.95 Group3
53 27.24 58.53 6.15 184.72 Group3
54 28.7 58.69 5.65 139.35 Group3
55 35.16 59.28 6.38 45.34 Group3
56 36.9 59.95 6.98 45.87 Group2
57 41.1 59.68 6.01 130.61 Group3
58 46.9 60.07 6.28 7.01 Group3

(continued on next page)
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Appendix A (continued)

Nr. Gauge ID Latitude (°) Longitude (°) Area (km2) Group

59 48.1 60.01 6.55 470.22 Group3
60 48.5 59.97 6.73 120.50 Group3
61 50.1 60.36 6.75 232.73 Validation
62 50.13 60.39 7.40 262.61 Group2
63 55.4 60.25 5.44 50.09 Group3
64 62.5 60.63 6.29 1092.04 Group3
65 62.10 60.80 6.50 158.28 Group3
66 72.5 60.85 7.11 268.16 Validation
67 73.27 61.17 8.10 30.32 Group2
68 75.23 61.35 7.40 45.92 Validation
69 76.5 61.67 7.24 65.29 Group2
70 76.5 61.67 7.24 65.29 Group2
71 77.3 61.30 7.01 110.93 Group3
72 78.8 61.45 6.74 40.42 Group3
73 82.4 61.25 5.39 218.96 Group3
74 83.2 61.33 5.89 508.13 Group3
75 87.10 61.72 6.52 217.12 Group3
76 88.4 61.86 6.89 234.88 Validation
77 91.2 62.16 5.17 25.72 Group3
78 97.1 62.33 6.59 88.95 Group3
79 98.4 62.07 6.93 138.78 Validation
80 103.1 62.28 8.12 435.51 Group2
81 103.40 62.47 7.78 1099.42 Validation
82 105.1 62.79 7.73 137.59 Group3
83 107.3 62.97 7.16 24.23 Group3
84 109.9 62.51 9.59 745.38 Validation
85 109.29 62.61 8.73 85.44 Validation
86 109.42 62.65 8.69 2437.41 Validation
87 122.9 63.11 10.23 3086.41 Validation
88 122.11 62.89 11.18 654.24 Validation
89 122.17 62.99 10.25 546.17 Validation
90 123.31 63.27 11.13 145.00 Group5
91 124.2 63.49 11.36 494.72 Group5
92 127.11 63.79 12.33 176.13 Validation
93 127.13 63.76 11.77 479.64 Group5
94 133.7 63.80 10.23 206.61 Group3
95 138.1 64.24 11.08 239.07 Group3
96 139.35 64.43 12.48 852.39 Validation
97 148.2 65.37 12.54 108.47 Group3
98 151.15 65.44 13.99 653.36 Group2
99 152.4 65.91 13.31 525.69 Validation
100 156.10 66.46 13.88 210.63 Group3
101 157.3 66.39 13.18 16.33 Group3
102 161.7 66.90 14.85 225.05 Group2
103 162.3 67.08 14.98 145.39 Validation
104 163.5 66.81 15.41 421.98 Group2
105 168.2 67.72 15.87 31.23 Validation
106 173.8 68.02 17.90 62.83 Group2
107 174.3 68.35 17.49 28.44 Group2
108 191.2 68.86 17.94 526.02 Validation
109 196.35 69.03 18.66 3110.65 Validation
110 200.4 69.98 19.10 136.01 Validation
111 203.2 69.73 19.86 92.48 Validation
112 206.3 69.52 20.53 200.48 Group2
113 208.3 69.53 21.38 1932.29 Validation
114 212.10 69.42 23.64 5620.81 Group1
115 212.27 69.80 23.24 624.18 Validation
116 212.49 70.03 22.94 144.89 Group2
117 223.2 70.14 24.76 877.14 Group2
118 230.1 70.88 27.51 19.31 Group2
119 234.13 69.43 24.94 2079.25 Group1
120 234.18 70.07 28.02 14161.40 Group1
121 247.3 69.66 30.38 128.89 Validation
122 311.6 61.26 12.32 4424.85 Group4
123 311.460 61.66 12.02 394.83 Validation
124 313.10 59.95 12.19 359.95 Group5
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Appendix B
List of the prescribed parameter values used for the Penman-Monteith approach.

Land use type Albedo1 [−] Vegetation
height [m]

Leaf
area
index2

[−]

Surface
resistance3

[s/m]

Tmin_open3 [°C] Tmin_close3 [°C] VPD_close3 [Pa] VPD_open3 [Pa] gl_sh3

[m/s]
Cl3 [m/s] z0g4 [m]

Open 0.25 0.2 2 40 12.02 −8 4200 650 0.02 0.007 0.001
Bog 0.17 0.5 2 50 8.8 −8 4400 650 0.04 0.0065 0.01
Build-up 0.11 10 4 0 12.02 −8 4200 650 0.02 0.007 0.02
Cropland 0.25 2 5 40 12.02 −8 4500 650 0.02 0.007 0.01
Heather 0.25 0.3 1 15 8.8 −8 4400 650 0.04 0.0065 0.02
Bedrock 0.12 0.1 0 0 12.02 −8 4200 650 0.02 0.007 0.001
Spruce 1 0.13 7.5 1.4 70 8.31 −8 3000 650 0.04 0.0032 0.02
Spruce 2 0.12 12.3 4.3 70 8.31 −8 3000 650 0.04 0.0032 0.02
Spruce 3 0.12 16.8 6.7 70 8.31 −8 3000 650 0.04 0.0032 0.02
Spruce 4 0.11 22 9.1 70 8.31 −8 3000 650 0.04 0.0032 0.02
Pine 1 0.15 7.5 0.9 70 8.31 −8 3000 650 0.04 0.0032 0.02
Pine 2 0.08 11.6 2.4 70 8.31 −8 3000 650 0.04 0.0032 0.02
Pine 3 0.1 17 2.3 70 8.31 −8 3000 650 0.04 0.0032 0.02
Pine 4 0.09 17.2 4.4 70 8.31 −8 3000 650 0.04 0.0032 0.02
Deciduou 1 0.16 4.9 0.5 100 9.09 −6 2900 650 0.04 0.0032 0.02
Deciduou 2 0.16 8.4 1.8 100 9.09 −6 2900 650 0.04 0.0032 0.02
Deciduou 3 0.14 12.2 3.9 100 9.09 −6 2900 650 0.04 0.0032 0.02
Deciduou 4 0.15 18.3 7 100 9.09 −6 2900 650 0.04 0.0032 0.02

Note: 1. Albedo is used to calculate the net incoming raditation to the land surface.
2. Leaf area index (LAI) varies for deciduous forest and crops seasonally and the values here are the maximum LAI.
3. Surface resistance (rs) for vegetation are calculated using the parameters Tmin_open, Tmin_close, VPD_close, VPD_open, gl_sh and CL. The values in this table are
the maximum rs.
Tmin_open is the air temperature at which there is no water stress on transpiration.
Tmin_close is the air temperature at which stomata close almost completely.
VPD_open is the vapor pressure deficit (VPD) value at which where is no water stress on transpiration.
VPD_close is the VPD value at which stomata close almost completely.
gl_sh is leaf conductance to sensible heat per unit LAI.
CL is the mean potential stomatal conductance per unit leaf area
The details of equations and the paramters can be found in Mu et al. (2011) for vegetations.
4. z0g is the roughness parameter for ground, used in the estimation of aerodynamic resistances. More details see Federer et al. (1996).
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Legend

Number of measurements 
per snow station

Hydrological regime
DEM 
m a.s.l.

< 200
200 - 400
400 - 600
600 - 800

> 1400

1 - 30
31 - 60
61 - 90
91 - 282

Appendix C. Distribution of the snow stations operated by the hydropower companies.

S. Huang, et al. Journal of Hydrology 577 (2019) 123585

17



References

Abbaspour, K.C., et al., 2015. A continental-scale hydrology and water quality model for
Europe: calibration and uncertainty of a high-resolution large-scale SWAT model. J
Hydrol 524, 733–752. https://doi.org/10.1016/j.jhydrol.2015.03.027.

Ahlstrøm, A., Bjørkelo, K., Frydenlund, J., 2014. AR5 klassifikasjonssystem –
Klassifikasjon av arealressurser. Norsk institutt for Skog og landskap, report nr. 6/
2014, 38 pp. http://hdl.handle.net/11250/2440173.

Beck, H.E., et al., 2016. Global-scale regionalization of hydrologic model parameters.
Water Resour. Res. 52 (5), 3599–3622. https://doi.org/10.1002/2015wr018247.

Beldring, S., Engeland, K., Roald, L.A., Saelthun, N.R., Vokso, A., 2003. Estimation of
parameters in a distributed precipitation-runoff model for Norway. Hydrol. Earth
Syst. Sci. 7 (3), 304–316. https://doi.org/10.5194/hess-7-304-2003.

Bergström, S., 1976. Development and Application of a Conceptual Runoff Model for
Scandinavian Catchments. Swedish meteorological and hydrological institute,
Norrköping, Sweden report nr. RHO 7.

Bergström, S., 1995. The HBV model. In: Singh, V.P. (Ed.), Computer Models of
Watershed Hydrology. Water resources publications, pp. 443–476.

Bergström, S., 2006. Experience from applications of the HBV hydrological model from
the perspective of prediction in ungauged basins. In: Andréassian, V., Hall, A.,
Chahinian, N., Schaake, J. (Eds.), Large Sample Basin Experiments for Hydrological
Model Parameterization: Results of the Model Parameter Experiments. MOPEX. IAHS
Publication, pp. 97–109.

Bohn, T.J., et al., 2013. Global evaluation of MTCLIM and related algorithms for forcing
of ecological and hydrological models. Agric. For. Meteorol. 176, 38–49. https://doi.
org/10.1016/j.agrformet.2013.03.003.

Bowman, A.L., Franz, K.J., Hogue, T.S., 2017. Case studies of a MODIS-based potential
evapotranspiration input to the sacramento soil moisture accounting model. J.
Hydrometeorol. 18 (1), 151–158. https://doi.org/10.1175/Jhm-D-16-0214.1.

Bright, R.M., et al., 2018. Inferring surface albedo prediction error linked to forest
structure at high latitudes. J. Geophys. Res. Atmos. 123 (10), 4910–4925. https://doi.
org/10.1029/2018JD028293.

Coron, L., Andreassian, V., Perrin, C., Bourqui, M., Hendrickx, F., 2014. On the lack of
robustness of hydrologic models regarding water balance simulation: a diagnostic
approach applied to three models of increasing complexity on 20 mountainous
catchments. Hydrol. Earth Syst. Sci. 18 (2), 727–746. https://doi.org/10.5194/hess-
18-727-2014.

(a)Ep(1962-1970) (b)Ep(1971-1980) (c)Ep(1981-1990)

(d)Ep(1991-2000) (e)Ep(2000-2012)

Mean=
242mm/yr

Mean=
254mm/yr

Mean=
237mm/yr

Mean=
241mm/yr

Mean=
248mm/yr

Legend
mm/yr

<200
200-250
250-300
300-350
>350

Appendix D. Potential evapotranspiration (Ep) simulated by the Variable Infiltration Capacity model in different periods (a–e) and the annual Ep in each year (f).

S. Huang, et al. Journal of Hydrology 577 (2019) 123585

18

https://doi.org/10.1016/j.jhydrol.2015.03.027
http://hdl.handle.net/11250/2440173
https://doi.org/10.1002/2015wr018247
https://doi.org/10.5194/hess-7-304-2003
http://refhub.elsevier.com/S0022-1694(19)30249-5/h0025
http://refhub.elsevier.com/S0022-1694(19)30249-5/h0025
http://refhub.elsevier.com/S0022-1694(19)30249-5/h0025
http://refhub.elsevier.com/S0022-1694(19)30249-5/h0030
http://refhub.elsevier.com/S0022-1694(19)30249-5/h0030
http://refhub.elsevier.com/S0022-1694(19)30249-5/h0035
http://refhub.elsevier.com/S0022-1694(19)30249-5/h0035
http://refhub.elsevier.com/S0022-1694(19)30249-5/h0035
http://refhub.elsevier.com/S0022-1694(19)30249-5/h0035
http://refhub.elsevier.com/S0022-1694(19)30249-5/h0035
https://doi.org/10.1016/j.agrformet.2013.03.003
https://doi.org/10.1016/j.agrformet.2013.03.003
https://doi.org/10.1175/Jhm-D-16-0214.1
https://doi.org/10.1029/2018JD028293
https://doi.org/10.1029/2018JD028293
https://doi.org/10.5194/hess-18-727-2014
https://doi.org/10.5194/hess-18-727-2014


Demirel, M.C., et al., 2018. Combining satellite data and appropriate objective functions
for improved spatial pattern performance of a distributed hydrologic model. Hydrol.
Earth Syst. Sci. 22 (2), 1299–1315. https://doi.org/10.5194/hess-22-1299-2018.

Doherty, J., Skahill, B.E., 2006. An advanced regularization methodology for use in
watershed model calibration. J. Hydrol. 327 (3–4), 564–577. https://doi.org/10.
1016/j.jhyrol.2005.11.058.

Donohue, R.J., McVicar, T.R., Roderick, M.L., 2010. Assessing the ability of potential
evaporation formulations to capture the dynamics in evaporative demand within a
changing climate. J. Hydrol. 386 (1–4), 186–197. https://doi.org/10.1016/j.jhydrol.
2010.03.020.

Ershadi, A., McCabe, M.F., Evans, J.P., Wood, E.F., 2015. Impact of model structure and
parameterization on Penman-Monteith type evaporation models. J. Hydrol. 525,
521–535. https://doi.org/10.1016/j.jhydrol.2015.04.008.

Federer, C.A., Voeroesmarty, C., Fekete, B., 1996. Intercomparison of methods for cal-
culating potential evaporation in regional and global water balance models. Water
Resour. Res. 32 (7), 2315–2321. https://doi.org/10.1029/96WR00801.

Fowler, K.J.A., Peel, M.C., Western, A.W., Zhang, L., Peterson, T.J., 2016. Simulating
runoff under changing climatic conditions: revisiting an apparent deficiency of
conceptual rainfall-runoff models. Water Resour. Res. 52 (3), 1820–1846. https://
doi.org/10.1002/2015wr018068.

Førland, E.J. et al., 1996. Manual for operational correction of Nordic precipitation data,
Norwegian Meteorological Institute, DNMI Klima Report, report nr. 24/1996, 72 pp.

Gjertsen, A.K., Nilsen, J.E., 2012. SAT-SKOG: Et skogkart basert på tolking av sa-
tellittbilder. Norsk institutt for Skog og landskap, report nr. 23/2012, 54 pp. http://
hdl.handle.net/11250/2453917.

Hanssen-Bauer, I. et al., 2017. Climate in Norway 2100 - a knowledge base for climate
adaptation. Norwegian Environment Agency, report nr. 1/2017, 48 pp.

Hartigan, J.A., Wong, M.A., 1979. Algorithm AS 136: a K-means clustering algorithm.
Appl. Stat. 28, 100–108. https://doi.org/10.2307/2346830.

Hetager, S.E., Lystad, S.L., 1974. Evaporation from a free water surface – values based on
measurements in the period 1967 – 1972. The Norwegian committee for the inter-
national hydrological decade programme, Oslo.

Hundecha, Y., Arheimer, B., Donnelly, C., Pechlivanidis, I., 2016. A regional parameter
estimation scheme for a pan-European multi-basin model. J. Hydrol. –Reg. Stud. 6,
90–111. https://doi.org/10.1016/j.ejrh.2016.04.002.

Kaspersen, P.S., Halsnæs, K., Gregg, J.S., Drews, M., 2012. Methodological framework,
analytical tool and database for the assessment of climate change impacts, adaptation
and vulnerability in Denmark. DTU Management Engineering Report; No. 11.2012.

Kling, H., Fuchs, M., Paulin, M., 2012. Runoff conditions in the upper Danube basin under
an ensemble of climate change scenarios. J. Hydrol. 424, 264–277. https://doi.org/
10.1016/j.jhydrol.2012.01.011.

Li, H., Xu, C.Y., Beldring, S., 2015. How much can we gain with increasing model com-
plexity with the same model concepts? J. Hydrol. 527, 858–871. https://doi.org/10.
1016/j.jhydrol.2015.05.044.

Liang, X., Lettenmaier, D.P., Wood, E.F., Burges, S.J., 1994. A simple hydrologically based
model of land surface water and energy fluxes for general circulation models. J.
Geophys. Res. 99 (D7), 14415–14428. https://doi.org/10.1029/94JD00483.

Lopez, P.L., Sutanudjaja, E.H., Schellekens, J., Sterk, G., Bierkens, M.F.P., 2017.
Calibration of a large-scale hydrological model using satellite-based soil moisture and
evapotranspiration products. Hydrol. Earth Syst. Sci. 21 (6), 3125–3144. https://doi.
org/10.5194/hess-21-3125-2017.

Lussana, C., 2017. Spatial Interpolation of Daily Minimum, Maximum and Mean
Temperature. Norwegian Meteorological Institute, pp. 52 report nr. 02/2017.

Lussana, C., et al., 2018. seNorge2 daily precipitation, an observational gridded dataset
over Norway from 1957 to the present day. Earth Syst. Sci. Data 10 (1), 235–249.
https://doi.org/10.5194/essd-10-235-2018.

Magnusson, J., et al., 2015. Evaluating snow models with varying process representations
for hydrological applications. Water Resour. Res. 51 (4), 2707–2723. https://doi.org/
10.1002/2014wr016498.

Majasalmi, T., Eisner, S., Astrup, R., Fridman, J., Bright, R.M., 2018. An enhanced forest
classification scheme for modeling vegetation-climate interactions based on national
forest inventory data. Biogeosciences 15 (2), 399–412. https://doi.org/10.5194/bg-
15-399-2018.

McAfee, S.A., 2013. Methodological differences in projected potential evapotranspiration.
Clim. Change 120 (4), 915–930. https://doi.org/10.1007/s10584-013-0864-7.

Merz, R., Parajka, J., Bloschl, G., 2011. Time stability of catchment model parameters:
Implications for climate impact analyses. Water Resour. Res. 47. https://doi.org/10.
1029/2010wr009505.

Miralles, D.G., et al., 2011. Global land-surface evaporation estimated from satellite-
based observations. Hydrol. Earth Syst. Sci. 15 (2), 453–469. https://doi.org/10.
5194/hess-15-453-2011.

Miralles, D.G., et al., 2016. The WACMOS-ET project – Part 2: evaluation of global ter-
restrial evaporation data sets. Hydrol. Earth Syst. Sci. 20 (2), 823–842. https://doi.
org/10.5194/hess-20-823-2016.

Mohr, M., 2008. New routines for gridding of temperature and precipitation observations
for “seNorge. no”, the Norwegian meteorological Institute, report nr. 08/2008, 43 pp.

Monteith, J.L., 1965. Evaporation and environment. Symp. Soc. Exp. Biol. 19, 205–234.
Mu, Q.Z., Zhao, M.S., Running, S.W., 2011. Improvements to a MODIS global terrestrial

evapotranspiration algorithm. Remote Sens. Environ. 115 (8), 1781–1800. https://
doi.org/10.1016/j.rse.2011.02.019.

Mueller, M., et al., 2017. AROME-MetCoOp: a nordic convective-scale operational
weather prediction model. Weather For. 32 (2), 609–627. https://doi.org/10.1175/
Waf-D-16-0099.1.

Naabil, E., Lamptey, B.L., Arnault, J., Kunstmann, H., Olufayo, A., 2017. Water resources
management using WRF-Hydro modelling system: case study of the Tono basin in

West Africa. J. Hydro Regional Stud. 12, 196–209. https://doi.org/10.1016/j.ejrh.
2017.05.010.

Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I
-A discussion of principles. J. Hydrol. 10 (3), 282–290.

Nijssen, B., O'Donnell, G.M., Lettenmaier, D.P., Lohmann, D., Wood, E.F., 2001.
Predicting the discharge of global rivers. J Clim. 14 (15), 3307–3323. https://doi.
org/10.1175/1520-0442(2001) 014<3307:Ptdogr>2.0.Co;2.

Olsson, C., Jonsson, A.M., 2014. Process-based models not always better than empirical
models for simulating budburst of Norway spruce and birch in Europe. Global Change
Biol. 20 (11), 3492–3507. https://doi.org/10.1111/gcb.12593.

Olsson, J., et al., 2016. Hydrological climate change impact assessment at small and large
scales: key messages from recent progress in Sweden. Climate 4 (3). https://doi.org/
10.3390/cli4030039.

Orth, R., Staudinger, M., Seneviratne, S.I., Seibert, J., Zappa, M., 2015. Does model
performance improve with complexity? A case study with three hydrological models.
J. Hydrol. 523, 147–159. https://doi.org/10.1016/j.jhydrol.2015.01.044.

Oudin, L., Andreassian, V., Perrin, C., Michel, C., Le Moine, N., 2008. Spatial proximity,
physical similarity, regression and ungaged catchments: a comparison of re-
gionalization approaches based on 913 French catchments. Water Resour Res 44 (3).
https://doi.org/10.1029/2007WR006240.

Parajka, J., Bloschl, G., Merz, R., 2007. Regional calibration of catchment models:
Potential for ungauged catchments. Water Resour. Res. 43 (6). https://doi.org/10.
1029/2006wr005271.

Rakovec, O., et al., 2016. Multiscale and multivariate evaluation of water fluxes and
states over European river basins. J Hydrometeorol 17 (1), 287–307. https://doi.org/
10.1175/Jhm-D-15-0054.1.

Ramoelo, A., et al., 2014. Validation of global evapotranspiration product (MOD16) using
flux tower data in the african savanna South Africa. Remote Sens.-Basel 6 (8),
7406–7423. https://doi.org/10.3390/rs6087406.

Reistad, M., et al., 2011. A high-resolution hindcast of wind and waves for the North Sea,
the Norwegian Sea, and the Barents Sea. J. Geophys. Res.-Oceans 116. https://doi.
org/10.1029/2010jc006402.

Saloranta, T., 2014. New version (v.1.1.1) of the seNorge snow model and snow maps for
Norway. 6 – 2014, Norwegian Water Resources and Energy Directorate, Oslo,
Norway, report nr. 6/2014, 36 pp.

Saloranta, T.M., 2012. Simulating snow maps for Norway: description and statistical
evaluation of the seNorge snow model. Cryosphere 6 (6), 1323–1337. https://doi.
org/10.5194/tc-6-1323-2012.

Seiller, G., Anctil, F., 2016. How do potential evapotranspiration formulas influence
hydrological projections? Hydrol. Sci. J. 61 (12), 2249–2266. https://doi.org/10.
1080/02626667.2015.1100302.

Shutov, V., Gieck, R.E., Hinzman, L.D., Kane, D.L., 2006. Evaporation from land surface in
high latitude areas: a review of methods and study results. Nord Hydrol. 37 (4–5),
393–411. https://doi.org/10.2166/nh.2006.022.

Shuttleworth, W.J., Wallace, J.S., 1985. Evaporation from sparse crops-an energy com-
bination theory. Quart. J. Roy. Meteorol. Soc. 111 (469), 839–855. https://doi.org/
10.1002/qj.49711146910.

Spies, R.R., Franz, K.J., Hogue, T.S., Bowman, A.L., 2015. Distributed hydrologic mod-
eling using satellite-derived potential evapotranspiration. J. Hydrometeorol. 16 (1),
129–146. https://doi.org/10.1175/Jhm-D-14-0047.1.

Tallaksen, L.M., Schunselaar, S., van Veen, R., 1996. Comparative model estimates of
interception loss in a coniferous forest stand. Nordic Hydrol. 27, 143–160. https://
doi.org/10.2166/nh.1996.0001.

Tang, R.L., et al., 2015. Multiscale validation of the 8-day MOD16 evapotranspiration
product using flux data collected in china. IEEE J-Stars 8 (4), 1478–1486. https://doi.
org/10.1109/Jstars.2015.2420105.

te Linde, A.H., Aerts, J.C.J.H., Hurkmans, R.T.W.L., Eberle, M., 2008. Comparing model
performance of two rainfall-runoff models in the Rhine basin using different atmo-
spheric forcing data sets. Hydrol. Earth Syst. Sci. 12 (3), 943–957. https://doi.org/10.
5194/hess-12-943-2008.

Thom, A.S., 1975. Momentum, mass and heat exchange of the plant communities. In:
Monteith, J.L. (Ed.), Vegetation and Atmosphere. Academic Press, London, pp.
57–109.

Troy, T.J., Wood, E.F., Sheffield, J., 2008. An efficient calibration method for continental-
scale land surface modeling. Water Resour. Res. 44 (9). https://doi.org/10.1029/
2007wr006513.

Weedon, G.P., et al., 2011. Creation of the WATCH forcing data and its use to assess
global and regional reference crop evaporation over land during the twentieth cen-
tury. J. Hydrometeorol. 12 (5), 823–848. https://doi.org/10.1175/2011JHM1369.1.

Williams, J.R., Renard, K.G., Dyke, P.T., 1984. EPIC – A new model for assessing erosion's
effect on soil productivity. J. Soil. Water. Conserv. 38 (5), 381–383.

Wolff, M.A., et al., 2015. Derivation of a new continuous adjustment function for cor-
recting wind-induced loss of solid precipitation: results of a Norwegian field study.
Hydrol. Earth Syst. Sci. 19 (2), 951–967. https://doi.org/10.5194/hess-19-951-2015.

Yang, X., Magnusson, J., Rizzi, J., Xu, C.Y., 2018. Runoff prediction in ungauged catch-
ments in Norway: comparison of regionalization approaches. Hydro Res. 49 (1).
https://doi.org/10.2166/nh.2017.071.

Yang, X.Q., Yong, B., Ren, L.L., Zhang, Y.Q., Long, D., 2017. Multi-scale validation of
GLEAM evapotranspiration products over China via China FLUX ET measurements.
Int. J. Remote Sens. 38 (20), 5688–5709. https://doi.org/10.1080/01431161.2017.
1346400.

Yilmaz, K.K., Gupta, H.V., Wagener, T., 2008. A process-based diagnostic approach to
model evaluation: application to the NWS distributed hydrologic model. Water
Resour. Res. https://doi.org/10.1029/2007wr006716.

S. Huang, et al. Journal of Hydrology 577 (2019) 123585

19

https://doi.org/10.5194/hess-22-1299-2018
https://doi.org/10.1016/j.jhyrol.2005.11.058
https://doi.org/10.1016/j.jhyrol.2005.11.058
https://doi.org/10.1016/j.jhydrol.2010.03.020
https://doi.org/10.1016/j.jhydrol.2010.03.020
https://doi.org/10.1016/j.jhydrol.2015.04.008
https://doi.org/10.1029/96WR00801
https://doi.org/10.1002/2015wr018068
https://doi.org/10.1002/2015wr018068
http://hdl.handle.net/11250/2453917
http://hdl.handle.net/11250/2453917
https://doi.org/10.2307/2346830
https://doi.org/10.1016/j.ejrh.2016.04.002
https://doi.org/10.1016/j.jhydrol.2012.01.011
https://doi.org/10.1016/j.jhydrol.2012.01.011
https://doi.org/10.1016/j.jhydrol.2015.05.044
https://doi.org/10.1016/j.jhydrol.2015.05.044
https://doi.org/10.1029/94JD00483
https://doi.org/10.5194/hess-21-3125-2017
https://doi.org/10.5194/hess-21-3125-2017
http://refhub.elsevier.com/S0022-1694(19)30249-5/h0145
http://refhub.elsevier.com/S0022-1694(19)30249-5/h0145
https://doi.org/10.5194/essd-10-235-2018
https://doi.org/10.1002/2014wr016498
https://doi.org/10.1002/2014wr016498
https://doi.org/10.5194/bg-15-399-2018
https://doi.org/10.5194/bg-15-399-2018
https://doi.org/10.1007/s10584-013-0864-7
https://doi.org/10.1029/2010wr009505
https://doi.org/10.1029/2010wr009505
https://doi.org/10.5194/hess-15-453-2011
https://doi.org/10.5194/hess-15-453-2011
https://doi.org/10.5194/hess-20-823-2016
https://doi.org/10.5194/hess-20-823-2016
http://refhub.elsevier.com/S0022-1694(19)30249-5/h0190
https://doi.org/10.1016/j.rse.2011.02.019
https://doi.org/10.1016/j.rse.2011.02.019
https://doi.org/10.1175/Waf-D-16-0099.1
https://doi.org/10.1175/Waf-D-16-0099.1
https://doi.org/10.1016/j.ejrh.2017.05.010
https://doi.org/10.1016/j.ejrh.2017.05.010
http://refhub.elsevier.com/S0022-1694(19)30249-5/h0210
http://refhub.elsevier.com/S0022-1694(19)30249-5/h0210
https://doi.org/10.1175/1520-0442(2001) 014<3307:Ptdogr>2.0.Co;2
https://doi.org/10.1175/1520-0442(2001) 014<3307:Ptdogr>2.0.Co;2
https://doi.org/10.1111/gcb.12593
https://doi.org/10.3390/cli4030039
https://doi.org/10.3390/cli4030039
https://doi.org/10.1016/j.jhydrol.2015.01.044
https://doi.org/10.1029/2007WR006240
https://doi.org/10.1029/2006wr005271
https://doi.org/10.1029/2006wr005271
https://doi.org/10.1175/Jhm-D-15-0054.1
https://doi.org/10.1175/Jhm-D-15-0054.1
https://doi.org/10.3390/rs6087406
https://doi.org/10.1029/2010jc006402
https://doi.org/10.1029/2010jc006402
https://doi.org/10.5194/tc-6-1323-2012
https://doi.org/10.5194/tc-6-1323-2012
https://doi.org/10.1080/02626667.2015.1100302
https://doi.org/10.1080/02626667.2015.1100302
https://doi.org/10.2166/nh.2006.022
https://doi.org/10.1002/qj.49711146910
https://doi.org/10.1002/qj.49711146910
https://doi.org/10.1175/Jhm-D-14-0047.1
https://doi.org/10.2166/nh.1996.0001
https://doi.org/10.2166/nh.1996.0001
https://doi.org/10.1109/Jstars.2015.2420105
https://doi.org/10.1109/Jstars.2015.2420105
https://doi.org/10.5194/hess-12-943-2008
https://doi.org/10.5194/hess-12-943-2008
http://refhub.elsevier.com/S0022-1694(19)30249-5/h0305
http://refhub.elsevier.com/S0022-1694(19)30249-5/h0305
http://refhub.elsevier.com/S0022-1694(19)30249-5/h0305
https://doi.org/10.1029/2007wr006513
https://doi.org/10.1029/2007wr006513
https://doi.org/10.1175/2011JHM1369.1
http://refhub.elsevier.com/S0022-1694(19)30249-5/h0320
http://refhub.elsevier.com/S0022-1694(19)30249-5/h0320
https://doi.org/10.5194/hess-19-951-2015
https://doi.org/10.2166/nh.2017.071
https://doi.org/10.1080/01431161.2017.1346400
https://doi.org/10.1080/01431161.2017.1346400
https://doi.org/10.1029/2007wr006716

	Improvements of the spatially distributed hydrological modelling using the HBV model at 1 km resolution for Norway
	Introduction
	Study area
	Methods and data
	HBV model
	Regionalized calibration
	Model input data
	Data for potential evapotranspiration and snow water equivalent comparison

	Results
	Validation of potential evapotranspiration estimates
	Calibration and validation results on river discharge
	Hydrological components

	Discussion
	Conclusion
	Declaration of interests
	Acknowledgement
	Appendix
	References




